

Process Management of Linux in Embedded System Based on Priority-Driven
Tactics

Chaojun Yana *, Wenbiao Pengb, and Juling Zeng c

College of Computer and Information technology, Three Gorges University, Yichang 443002, China
a 78498164@qq.com; b 51219905@qq.com; c 2404569524@qq.com

* The corresponding author

Keywords: Linux; Embedded-system; Process; Priority-driven; Scheduling

Abstract: Process scheduling is the core element of multi-tasking and multi-user operating system
especially in embedded system of Linux. In this paper, the problems of process scheduling of
embedded Linux is analyzed and the opportunity of process scheduling and process scheduling
algorithm are described. The real-time scheduling algorithm or process scheduling based on the
Priority-Driven Tactics is majorly analyzed and its high efficiency is demonstrated.

1. Introduction

Linux is very suitable for the application of the embedded system with the features of kernel stable,
powerful, scalable and low cost [1,2]. But Linux kernel itself does not have the feature of strong
real-time and the kernel is large. Therefore, if you want to use Linux for embedded systems, Linux
must be real-time and embedded. Linux achieves an efficient and flexible process scheduling for
combining the characteristics of real-time processes and non-real-time processes (general process),
and colligating the several scheduling strategy.

Processor (CPU) is the core resources of the entire computer system. In a multi-process operating
system, the number of the process is often more than the number of processor, which will result in the
process competing processors. Process scheduling has a decisive influence on the system functions to
achieve and the various aspects of the performance. And its essence is distributing the processor
fairly, reasonably and efficiently to each process. Scheduling is the necessary means to achieve the
concurrent execution of multiple tasks. Different operating systems have different scheduling
objectives. In the traditional Unix-class time-sharing system, the main objective of scheduling is to
ensure the multiple processes equitably use system resources and providing better response time. In a
strong real-time operating system, the high priority task always uses the processor as a priority.

Standard Linux kernel is non-preemptive kernel. The system uses FIFO’s I / O mode of operation
and information processing system [3]. Process scheduling strategy is the basic and the fair priority
scheduling policy, since multiple processes shared resources in the process of process scheduling
may lead to priority reversals. Process scheduling is the core of the operating system and the key of
controlling the Linux kernel. Process scheduling is divided into two parts, one is scheduling time that
when scheduling; one is the scheduling algorithm which is how to dispatch and dispatching which
process.

2. Linux Process Scheduling Time and Scheduling Algorithms
Scheduling time is to run scheduler to choose the process running under what circumstances.

Scheduler in the Linux system is through the function schedule () to implement. This function is
called high frequency by it to decide to run which process.

In Fig.1, a multi-tasks(process) and multi-processors embedded operation system of Linux process
scheduling is shown. Linux scheduling time is divided into two situations: active scheduling and
passive scheduling [4]. Active scheduling calls directly schedule () to achieve the schedule when the

2019 9th International Conference on Management, Education and Information (MEICI 2019)

Copyright © (2019) Francis Academic Press, UK DOI: 10.25236/meici.2019.039205

state of process changes. Passive scheduling does not immediately dispatch, but only to mark the
scheduling location of a current process as 1 when running time slice of a process is over or ready
queue add a process. Before the system state from the core state changes to the user state to check the
current process scheduling flag is 1, if 1, then it calls schedule () to dispatch.

One is the scheduling algorithm which is how to dispatch and dispatching which process. When
the scheduler runs, there is to choose a process which is most worth to run. The basis of selection
process mainly has scheduling policy (policy), static priority (priority), dynamic priority (counter)
and real-time priority (RT-priority) of the process. First of all, Linux is divided into real-time process
and the normal process for the whole. The two scheduling algorithms are different for the real-time
process preference to the normal process to run. Processes are called in turn with the level of priority.
The highest level of priority is real-time process.

Figure 1. The task scheduling in multi-tasks and multi-processors operation system

3. Real-Time Scheduling Algorithms
Embedded Linux is not a real-time system. But the requirements are very high on real-time

performance of control system in industrial control systems. It is firstly to address the issue of
real-time performance if you want to apply the embedded Linux to industrial control system.

At present, these real-time scheduling algorithms can be divided into three types: priority-driven,
time driven, and share-driven scheduling algorithm [5]. The share-driven scheduling algorithm is
used relatively less. Priority-driven algorithm is used most. Priority-driven real-time scheduling
algorithms are many, including the fixed priority scheduling algorithm, priority inheritance protocol,
priority scheduling algorithm, etc. These scheduling algorithms have been applied to various areas.
Each has their own advantages and disadvantages, such as fixed priority scheduling algorithm is
simple, relatively easy to achieve. But the problems are most serious is the cause of deadlock and
priority inversion problem; Priority inheritance protocol can solve deadlock and priority inversion
problem, but it is cumbersome to achieve and demanding on the system is higher, although it can
solve the problems of the deadlock and priority inversion. But the system efficiency is lower.

Priority-driven scheduling algorithm of real-time embedded Linux is based on "priority
inheritance protocols (PIPs)". It is optimized on this basis to make it more suitable for embedded
systems. Implementation works as follows: low-priority task can block the high-priority task when
the low-priority task running in the critical .In the blocking process, the low priority task
automatically inherits the priority of the high priority tasks which are blocked; In addition, the system
for every mission to set a maximum blocking time parameter to limit the maximum blocking time of
high-priority task which is blocked in order to ensure high-priority task is not always blocked down.

In this algorithm, the scheduler distributes an execution time to each task and there is a variable
function of time. The scheduler chooses the most important task to run according to the given
execution time of tasks and time function of calculated value. In the implementation process, the
scheduler tracks these tasks for the real-time and records their performance. These historical records
are as a basis of calculating time function and distribution of execution time to prepare for the next

206

implementation.

4. The Priority Inversion Solution
Consider the following situation: High-priority tasks TH and low-priority tasks TL when running

processes need to share a memory Y and both write operations [6]. They need a semaphore S to
ensure exclusive access to shared memory in order to ensure data completely. Task TM has the
priority TM between TH and TL.

1) Low-priority task TL obtained ownership of the semaphore S-that is to do P operation, but does
not do V operation;

2) At this point when the interrupts of another high-priority task TH occurs, real-time kernel set
the task TH to the running state through task scheduling to switch the task TL down

3) When TH start to execute and it need to access shared memory Y at half-way, it must do P
operation on S as S has not yet resumed, TH is blocked on the semaphore S;

4) TL regain control and resume execution;
5) At this point when the interrupts of another middle-high-priority task TM occurs. The real-time

kernel switches the task TL down again for the priority of TM is higher than TL. The task TM obtains
the right of execution of CPU. The task TM whose priority is lower than the task TH can skip directly
to TH to run. The task TH has to wait for the signal S by the task TL owning so that can not obtain the
right of execution of CPU before the task TM.

There is an issue of priority inversion. The performance of tasks TH and tasks TM act as their
priorities like upside down. Extreme situation is that priority inversion phenomenon will not stop as
long as the priority task TM emerging. It makes the behavior of the system become unstable and
impossible to predict.

Using real-time scheduling algorithm of described above to solve the priority inversion process is
as follows:

1) Low priority task TL locks the priority inheritance semaphore S;
2) High-priority task of TH appears and obtains the right of execution from the task TL;
3) TH is failed to attempt to lock S and it is blocked. The real-time kernel module obtains the

control rights;
4) The core of real-time scheduling resumes the task TL to execute and through S to temporarily

inherit the priority of TH;
The other middle-priority tasks TM appear, but can not get the right of execution from the tasks

TL;
1) TL continues until it gives up the ownership of S to the TH. The scheduling core wills TL to the

original of the priority;
2) TH resumes executing;
3) TM executes after TH is over.
It was seen from above that this real-time scheduling method can solve the problem of priority

inversion and to achieve them is also very simple. It is very suitable for embedded systems.

5. Summary
This article discusses the characteristics of the process scheduling in Linux, focusing on the

real-time scheduling algorithms of embedded Linux. It analyses a specific idea of priority-driven
scheduling algorithm to achieve.

References
[1] C. Hallinan, Embedded Linux Primer: a Practical Real-World Approach, Second ed., 2011.

[2] Peng Dong, Inside Embedded Operation System: Design, Structure and Develop from Scratch,
First ed., Mechanical Industry Press, 2015.

207

[3] D.P. Bovet, M. Cesati, Understanding the LINUX Kernel, First ed., O’Reilly Media, Inc., New
York, 2005

[4] R. Love, Linux Kernel Development, Second ed., Novell Press, New York, 2005

[5] J. Corbet, A. Bubini and G.K. Hartman, LINUX Device Drivers, Third ed., O’Reilly Media, Inc.,
New York,2006

[6] W.R. Stephen, S.A. Rago, advanced Programming in the UNIX Enviroment, Second ed.,
Addison-Wesley, New York, 2006

208

